Preview

Вестник Кемеровского государственного университета

Расширенный поиск

СОЛИТОНЫ РИЧЧИ В КОНТАКТНЫХ МЕТРИЧЕСКИХ МНОГООБРАЗИЯХ

Полный текст:

Аннотация

В работе изучаются солитоны Риччи, в N(k)-контактных метрических многообразиях и в контактных (k, ^)-многообразиях

Об авторе

Мукут Мани Трипатхи
Бенаресский индуистский университет, Варанаси, Индия
Россия


Список литературы

1. Arnold, V. I. Contact geometry: the geometrical method of Gibb's thermodynamics/ V. I. Arnold // Proceedings of the Gibbs Symposium, Yale University, (May 15-17, 1989). American Mathematical Society. - 1990. - P. 163 - 179.

2. Blair, D. E. Two remarks on contact metric structures / D. E. Blair // Tohoku Math. J. - 1977. - Vol. 29. - P. 319 - 324.

3. Blair, D. E. Riemannian geometry ofcontact and symplectic manifolds / D. E. Blair. - Progress in Mathematics, 203. - Birkhauser Boston, Inc.: Boston, MA, 2002.

4. Baikoussis, C. A decomposition of the curvature tensor of a contact manifold satisfying R(X,Y)£ = ^(Y)X - )Y) / C. Baikoussis, D. E. Blair and T. Koufogiorgos. - Mathematics Technical Report, University of Ioannina, Greece, 1992.

5. Blair, D. E. Contact metric manifolds satisfying a nullity condition / D. E. Blair, T. Koufogiorgos and B. J. Papantoniou // Israel J. Math. - 1995. Vol. 91, no. 1-3. - P. 189 - 214.

6. Blair, D.E. On the concircular curvature tensor ofa contact metric manifold / D.E. Blair, J.-S. Kim and M.M. Tripathi // J. Korean Math. Soc. - 2005. - Vol. 42, no. 5. - P. 883 - 892.

7. Boeckx, E. A full classification of contact metric (к, j)-spaces/ E. Boeckx // Illinois J. Math. -2000. - Vol. 44, no. 1. - P. 212 - 219.

8. Boyer, C. P. Einstein manifolds and contact geometry/ C. P. Boyer and K. Galicky // Proc. Amer. Math. Soc. - 2001. - Vol. 129. - P. 2419 - 2430.

9. Chave, T. Quasi-Einstein metrics and their renoirmalizability properties / T. Chave and G. Valent // Helv. Phys. Acta. - 1996. - Vol. 69. - P. 344 - 347.

10. Chave, T. On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties / T. Chave and G. Valent // Nuclear Phys. - 1996. - Vol. B 478. -

11. P. 758 - 778.

12. Chern, S. S. Pseudo-groups continus infinis/ S. S. Chern // Colloques Internationaux du C. N. R. S., Strassbourg. - P. 119 - 136.

13. Chow, B. The Ricci flow: An introduction/ B. Chow and D. Knoff. - Mathematical Surveys and Monographs 110, American Math. Soc., 2004.

14. Clifton, Y.H. The к-nullity space of curvature operator/ Y.H. Clifton and R. Maltz // Michigan Math. J. - 1970. - Vol. 17. - P. 85 - 89.

15. Derdzinski, A. Compact Ricci solitons, Preprint.

16. Friedan, D. H. Nonlinear models in 2 + e dimensions / D. H. Friedan // Ann. Physics. - 1985. - Vol. 163. - P. 318 - 419.

17. Geiges, H. A briefhistory ofcontact geometry and topology/ H. Geiges // Expo. Math. - 2001. - Vol. 19, no. 1. -P. 25 - 53.

18. Gray, J. W.Some global properties of contact structures / J. W. Gray // Ann. of Math. - 1959. - Vol. 69. - P. 421 - 450.

19. Hamilton, R. S. The Ricci flow on surfaces/ R. S. Hamilton // Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988.

20. Ivey, T. Ricci solitons on compact 3-manifolds/ T. Ivey // Differential Geom. Appl. -1993. - Vol. 3. - P. 301 - 307.

21. Koufogiorgos, T. Contact metric manifolds/ T. Koufogiorgos // Ann. Global Anal. Geom. - 1993. - Vol. 11. - P. 25 - 34.

22. MacLane, S. Geometrical mechanics II / S. MacLane. - Lecture notes, University of Chicago, 1968.

23. Nazaikinskii, V. E. Contact geometry and linear differential equations / V. E. Nazaikinskii, V. E. Shatalov and B. Y. Sternin. - Walter de Gruyter, Berlin, 1992.

24. Okumura, M. Some remarks on space with a certain contact structure / M. Okumura // Tohoku Math. J. - 1962. - Vol. 14. - P. 135 - 145.

25. Perelman, G. The entropy formula for the Ricci flow and its geometric applications/ G. Perelman. - Preprint, http://arXiv.org/abs/Math.DG/0211159.

26. Sasaki, S. On differentiable manifolds with certain structures which are closely related to almost contact structure. I / S. Sasaki // Tohoku Math. J. - 1960. - Vol. (2) 12. - P. 459 - 476.

27. Sasaki, S. On the differential geometry of tangent bundles of Riemannian manifolds II / S. Sasaki // Toohoku Math. J. - 1962. - Vol. (2) 14. - P. 146 - 155.

28. Sasaki, S., Hatakeyama, Y. On differentiable manifolds with certain structures which are closely related to almost contact structure . II / S. Sasaki, Y. Hatakeyama // Toohoku Math. J. - 1961. - Vol. (2) 13. - P. 281 - 294.

29. Sharma, R. Certain results on K-contact and ( к, j) -contact manifolds/ R. Sharma //, J. Geom. -2008. - Vol. 89, no. 1 - 2. - P. 138 - 147.

30. Sharma, R. Sasakian 3-manifold as a Ricci Soliton represents the Heisenberg group / R. Sharma, A. Ghosh // International Journal of Geometric Methods in Modern Physics. - 2011. - Vol. 8, no. 1. - P. 149 - 154.

31. Tanno, S. The topology of contact Riemannian manifolds / S. Tanno // Illinois J. Math. - 1968. - Vol. 12. - P. 700 - 717.

32. Tanno, S. Some differential equations on Riemannian manifolds / S. Tanno // J. Math. Soc. Japan. - 1978. - Vol. 30. - P. 509 - 531.

33. Tanno, S. Ricci curvatures of contact Riemannian manifolds / S. Tanno // Toohoku Math. J. - 1988. - Vol. 40. - P. 441 - 448.

34. Tashiro, Y. On contact structure of tangent sphere bundles / Y. Tashiro // Toohoku Math. J. -1969. - Vol. 21. - P. 117- 143.

35. Tripathi, M. M. and Kim, J.-S. On the concircular curvature tensor of a (K, J) -manifold/ M. M. Tripathi and J.-S. Kim // Balkan J. Geom. Appl. - 2004. - Vol. 9, no. 1. - P. 114 - 124.


Для цитирования:


Трипатхи М.М. СОЛИТОНЫ РИЧЧИ В КОНТАКТНЫХ МЕТРИЧЕСКИХ МНОГООБРАЗИЯХ. Вестник Кемеровского государственного университета. 2011;(3-1):181-186.

For citation:


Tripathi M.M. RICCI SOLITONS IN CONTACT METRIC MANIFOLDS. Bulletin of Kemerovo State University. 2011;(3-1):181-186. (In Russ.)

Просмотров: 12


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-8975 (Print)
ISSN 2078-8983 (Online)