Preview

Вестник Кемеровского государственного университета

Расширенный поиск

ИССЛЕДОВАНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ РЯДА ВЗРЫВЧАТЫХ ВЕЩЕСТВ МЕТОДАМИ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ

Полный текст:

Аннотация

Методами компьютерного моделирования в рамках теории функционала электронной плотности с использованием локализованных базисных наборов и гибридного функционала B3LYP получены геометрические параметры молекул энергетических материалов TATB, PETN, RDX, TNB, TNTA, Si-PETN, C2N5O2H3 и C3N5O4H3 и исследованы механизмы образования химической связи. Рассчитаны параметры производительности детонации и факторы чувствительности. Предлагается ввести в рассмотрение новый фактор чувствительности – заселенность перекрывания связей (P(A – NO2).

Об авторах

Т. Л. Празян
Кемеровский государственный университет
Россия
Празян Тигран Леонидович – магистрант по направлению «Физика конденсированного состояния вещества», ведущий инженер кафедры общей физики КемГУ


Ю. Н. Журавлев
Кемеровский государственный университет
Россия
Журавлев Юрий Николаевич – доктор физико-математических наук, заведующий кафедрой общей физики КемГУ


Список литературы

1. Адуев Б. П., Гречин С. С., Лисков И. Ю. Исследование характеристик взрывного разложения кристаллов тетранитропентаэритрита и гексогена // Вестник КемГУ. 2013. Т. 3. № 3(55). С. 50 – 54.

2. Алукер Э. Д., Кречетов А. Г., Митрофанов А. Ю. Лазерное инициирование ТЭНа: режим резонансного фотоинициирования // Вестник КемГУ. 2013. № 3(55). Т. 3. C. 54 – 60.

3. Akhavan J. The Chemistry of Explosives // London: Royal Society of Chemistry. 2004.

4. Allis D. G., Korter T. M. Theoretical Analysis of the Terahertz Spectrum of the High Explosive PETN // J. Phys. Chem. 2006. № 7. P. 2398 – 2408.

5. Aluker E. D., Krechetov A. G., Mitrofanov A. Y., Zverev A. S., Kuklja M. M. Topography of Photochemical Initiation in Molecular Materials // Molecules. 2013. V. 18. P. 14148 – 14160.

6. Barber, J., Hooks D. E., Funk D. J., Averitt R. D., Taylor A. J., Babikov D. Temperature-Dependent Far-Infrared Spectra of Single Crystals of High Explosives Using Terahertz Time-Domain Spectroscopy // J. Phys. Chem. 2005. V. 109. P. 3501 – 3505.

7. Bourasseau E., Maillet J. B, Desbiens N., Stoltz G. Microscopic Calculations of Hugoniot Curves of Neat Triaminotrinitrobenzene (TATB) and of Its Detonation Products // J. Phys. Chem. A. 2011. № 115. P. 10729 – 10737.

8. Brown G. W., Giambra A. M. Examination of Impurities in Pentaerythritol Tetranitrate // Journal of Energetic Materials. 2014. № 32. P. 117 – 128.

9. Byrd E. F.C., Rice B. M. Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Chemical Calculations // J. Phys. Chem. 2006. V. 110. P. 1005 – 1013.

10. Cady H. H., Larson A. C. The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene // Acta Cryst. 1965. V 18. P. 485 – 496.

11. Choi C. S. Prince // E. Acta Crystallogr. 1972. P. 2857.

12. CRYSTAL Basis Sets Library. Режим доступа: http://www.crystal.unito.it/Basis_Sets/Ptable.html (дата обращения: 18.09.2014).

13. Dippold A. A., Klapötke T.M. A study of dinitro-bis-1,2,4-triazole-1,1'-diol and derivatives: Design of highperformance insensitive energetic materials by the introduction of N-oxides // J. Am. Chem. Soc. 2013. № 135. P. 9931 – 9938.

14. Dippold A. A., Klapötke, T. M., Martin F. A., Wiedbrauk S. Nitraminoazoles based on ANTA–A comprehensive study of structural and energetic properties // Eur. J. Inorg. Chem. 2012. P. 2429 – 2443.

15. Dovesi R., Saunders V. R., Roetti R., Orlando R., Zicovick-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, Llunell M. CRYSTAL09 User’s Manual. Torino: University of Torino. 2010.

16. Fischer D., Klapötke T. M., Piercey D. G., Stierstorfer J. Synthesis of 5-aminotetrazole-1 Noxide and its azo derivative: A key step in the development of new energetic materials // Chem. Eur. J. 2013. № 19. P. 4602 – 4613.

17. Gao H. X., Shreeve J. M. Azole-based energetic salts // Chem. Rev. 2011. № 111. P. 7377 – 7436.

18. Joo Y., Shreeve J. M. High-density energetic monoor bis(oxy)-5-nitroiminotetrazoles // Angew. Chem. Int. Ed. 2010. № 49. P. 7320 – 7323.

19. Klapötke T. M., Krumm B., Martin F. A., Stierstorfer J. New azidotetrazoles: Structurally interesting and extremely sensitive // Chem. Asian J. 2012. № 7. P. 214 – 224.

20. Klapötke T. M., Piercey D. G., Stierstorfer J. The 1,3-diamino-1,2,3-triazolium cation: A highly energetic moiety // Eur. J. Inorg. Chem. 2013. P. 1509 – 1517.

21. Kroonblawd M. P., Sewell Th. D. Theoretical determination of anisotropic thermal conductivity for crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) // The Journal of Chemical Physics. 2013. № 139.

22. Li J. An Ab Initio Theoretical Study of 2,4,6-Trinitro-1,3,5-Triazine,3,6-Dinitro-1,2,4,5-Tetrazine, and 2,5,8Trinitro-Tri-s-Triazine Propellants Explos // Pyrotech. 2008. № 33. P. 443 – 447.

23. Li J. Relationships for the Impact Sensitivities of Energetic C-Nitro Compounds Based on Bond Dissociation Energy // J. Phys. Chem. 2010. V. 114. P. 2198 – 2202.

24. Lin H., Chen P., Zhu S., Zhang L., Peng X., Li K., Li H. Theoretical studies on the thermodynamic properties, densities, detonation properties, and pyrolysis mechanisms of trinitromethyl-substituted aminotetrazole compounds // J. Mol. Model. 2013. V. 19. № 6. P. 2413 – 2422.

25. Liu, W. G., Zybin S. V., Dasgupta S., Klapotke T. M., Goddard W. A. Explanation of the Colossal Detonation Sensitivity of Silicon Pentaerythritol Tetranitrate (Si-PETN) Explosive // J. AM. Chem. Soc. 2009. № 131. P. 7490 – 7491.

26. Luo Y. R. Handbook of Bond Dissociation Energies in Organic Compounds // Florida: CRC Press: Boca Raton. 2003.

27. Mader C. L. Numerical Modeling of Explosives and Propellants // CRC Press, Boca Raton, FL, 1998.

28. Meyer R., Köhler J., Homburg A. Explosives // Weinheim: Wiley-VCH. 2007.

29. Murray J. S., Concha M. C., Politzer P. Links between Surface Electrostatic Potentials of Energetic Molecules, Impact Sensitivities and C–NO2/N–NO2 Bond Dissociation Energies // Mol. Phys. 2009. V. 107. P. 89 – 97.

30. Politzer P., Lane P., Murray J. S. Tricyclic Polyazine N-Oxides as Proposed Energetic Compounds // Central European Journal of Energetic Materials. 2013. V. 10. № 3. P. 305 – 323.

31. Politzer P., Murray J. S. Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds // Central European Journal of Energetic Materials. 2011. № 8(3). P. 209 – 220.

32. Ravi P., Gore G. M., Tewari P. Surya, Sikder A. K. Theoretical Studies on AminoandMethyl-Substituted Trinitrodiazoles // J. Energ. Mater. 2011. V. 29. P. 209 – 227.

33. Rice B. M., Byrd E. F. C. Theoretical Chemical Characterization of Energetic Materials // J. Mater. Res. 2006. V. 21. P. 2444 – 2452.

34. Shan T. R., Wixom R. R., Mattsson A. E. Atomistic Simulation of Orientation Dependence in Shock-Induced Initiation of Pentaerythritol Tetranitrate // J. Phys. Chem. B. 2013. № 117. P. 928 − 936.

35. Shekhar H. Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives // Cent. Eur. J. Energ. Mater. 2012. V. 9. № 3. P. 39 – 48.

36. Shekhar H. The Applicability of Kamlet’s Method for the Prediction of the Velocity of Detonation (VOD) of Polyurethane (PU) Based Binary Explosive Compositions // Central European Journal of Energetic Materials. 2013. № 10(2). P. 217 – 223.

37. Srinivasan P., Maheshwari K., Jothi M., Kumaradhas P. Charge Density Distribution, Electrostatic Properties and Sensitivity of the Highly Energetic Molecule 2,4,6-Trinitro-1,3,5-triazine: A Theoretical Study // Central European Journal of Energetic Materials. 2012. № 9(1). P. 59 – 76.

38. Tang Y. X., Yang H.W., Wu B., Ju X. H., Lu C. X., Cheng G. B. Synthesis and characterization of a stable, catenated N11 energetic salt // Angew. Chem. Int. Ed. 2013. № 52. P. 4875 – 4877.

39. Tsyshevsky R. V., Sharia O., Kuklja M. M. Thermal Decomposition Mechanisms of Nitroesters: Ab Initio Modeling of Pentaerythritol Tetranitrate // J. Phys. Chem. 2013. № 117. P. 18144 − 18153.

40. Wang L., Yi C., Zou H., Gan H., Xu J., Xu W. Adsorption of the insensitive explosive TATB on singlewalled carbon nanotubes // Molecular Physics. 2011. V. 109. № 14. P. 1841 – 1849.

41. Xiao J. J., Li S. Y., Chen J., Ji G. F., Zhu W., Zhao F., Wu Q., Xiao H. M. Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs // J. Mol. Model. 2013. № 19. P. 803 – 809.

42. Zeman S. High Energy Density Materials: Structure and Bonding // Springer-Verlag: Heidelberg. 2007. V. 125. P. 195 – 271.

43. Zhang C., Shu Y., Huang Y., Zhao X., Dong H. Investigation of Correlation between Impact Sensitivities and Nitro Group Charges in Nitro Compounds // J. Phys. Chem. 2005. V. 109. P. 8978 – 8982.

44. Zhao X., Qi C., Zhang L., Wang Y., Li Sh., Zhao F., Pang S. Pang Amination of Nitroazoles – A Comparative Study of Structural and Energetic Properties // Molecules. 2014. V. 19. P. 896 – 910.

45. Zhao J., Xu D., Cheng X. Investigation of Correlation between Impact Sensitivities and Bond Dissociation Energies in Some Triazole Energetic Compounds // Structural Chemistry. 2010. V. 21. P. 1235 – 1240.


Для цитирования:


Празян Т.Л., Журавлев Ю.Н. ИССЛЕДОВАНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ РЯДА ВЗРЫВЧАТЫХ ВЕЩЕСТВ МЕТОДАМИ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ. Вестник Кемеровского государственного университета. 2014;(4-2):137-144.

For citation:


Prazyan T.L., Zhuravlev Y.N. RESEARCH OF PHYSICO-CHEMICAL PROPERTIES OF SOME EXPLOSIVES BY COMPUTER MODELLING. Bulletin of Kemerovo State University. 2014;(4-2):137-144. (In Russ.)

Просмотров: 128


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-8975 (Print)
ISSN 2078-8983 (Online)